Complete mixed integer linear programming formulations for modularity density based clustering

نویسندگان

  • Alberto Costa
  • Tsan Sheng Ng
  • Lin Xuan Foo
چکیده

Modularity density maximization is a clustering method that improves some issues of the commonly-used modularity maximization approach. Recently, some Mixed-Integer Linear Programming (MILP) reformulations have been proposed in the literature for the modularity density maximization problem, but they require as input the solution of a set of auxiliary binary Non-Linear Programs (NLPs). These can become computationally challenging when the size of the instances grows. In this paper we propose and compare some explicit MILP reformulations of these auxiliary binary NLPs, so that the modularity density maximization problem can be completely expressed as MILP. The resolution time is reduced by a factor up to two order of magnitude with respect to the one obtained with the binary NLPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight formulations for some simple mixed integer programs and convex objective integer programs

We study the polyhedral structure of simple mixed integer sets that generalize the two variable set {(s, z) ∈ IR1+×Z 1 : s ≥ b−z}. These sets form basic building blocks that can be used to derive tight formulations for more complicated mixed integer programs. For four such sets we give a complete description by valid inequalities and/or an integral extended formulation, and we also indicate wha...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Solving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming

Despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. This paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (MIP) models to solve thisproblem. These models have been formulated for the classical single machine problem, namely sequ...

متن کامل

Mathematical Programming Formulations for the Bottleneck Hyperplane Clustering Problem

We discuss a mixed-integer nonlinear programming formulation for the problem of covering a set of points with a given number of slabs of minimum width, known as the bottleneck variant of the hyperplane clustering problem. We derive several linear approximations, which we solve using a standard mixed-integer linear programming solver. A computational comparison of the performance of the differen...

متن کامل

Tight Mip Formulation for Multi-Item Discrete Lot-Sizing Problems

We study mixed integer programming formulations of variants of the discrete lot–sizing problem. Our approach is to identify simple mixed integer sets within these models and to apply tight formulations for these sets. This allows us to define integral linear programming formulations for the discrete lot–sizing problem in which backlogging and/or safety stocks are present, and to give extended f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2017